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An experimental and theoretical-numerical investigation has been carried out 
to extend existing knowledge of velocity and temperature distributions and local 
heat-transfer coefficients for natural convection within a horizontal annulus. 
A Mach-Zehnder interferometer was used to determine temperature distributions 
and local heat-transfer coefficients experimentally. Results were obtained using 
water and air at atmospheric pressure with a ratio of gap width to inner-cylinder 
diameter of 0.8. The Rayleigh number based on the gap width varied from 
2.1 1 x lo4 to 9.76 x lo5. A finite-difference method was used to solve the governing 
constant-property equations numerically. The Rayleigh number was changed 
from lo2 to lo5 with the influence of Prandtl number and diameter ratio obtained 
near a Rayleigh number of 104. Comparisons between the present experimental 
and numerical results under similar conditions show good agreement. 

1. Introduction 
Natural convective heat transfer from a body to a finite space enclosing i t  has 

received increased attention in recent years. Applications have included nuclear 
reactor design, cooling of electronic equipment, aircraft cabin insulation and 
thermal storage systems. The horizontal concentric cylinder geometry is used in 
pressurized-gas underground electric transmission cables (Pedersen, Doepken & 
Bolin 1971). 

Natural convection between horizontal concentric isothermal cylinders was 
first studied by Beckmann (1931), who used air, hydrogen and carbon dioxide 
to obtain overall heat-transfer coefficients. A similar investigation using air was 
made concurrently by Voigt & Krischer (1932). Kraussold (1934) extended these 
results to larger Prandtl numbers by using water, transformer oil and machine 
oil. He developed a correlation for the overall heat-transfer coefficients, including 
the data from Beckmann. Liu, Mueller & Landis (1961) measured the overall 
heat-transfer and radial temperature profiles of air, water and a silicone fluid. 
Qualitative flow descriptions were given for each fluid. Photographs of flow 
patterns in air using smoke were presented by Bishop & Carley (1966) and Bishop, 
Carley & Powe (1968). Different flow regimes depending on the Grashof number 
and diameter ratio were delineated by Powe, Carley & Bishop (1969). 
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The first determination of local heat-transfer coefficients in an annular 
geometry with air was made by Eckert & Soehngen (1948) using a Mach-Zehnder 
interferometer. Grigull & Hauf (1966) used a similar technique to measure the 
local heat-transfer coefficients in air on the inner cylinder for nine diameter ratios. 
Koshmarov & Ivanov (1973) obtained overall heat-transfer data for Grashof 
numbers between and lo5, including results in the rarefied-gas regime. Other 
Soviet studies include Zagromov & Lyalilrov (1966) and Berkengeim (1966). The 
only investigation into the turbulent regime has been made by Lis (1966), who 
also obtained results using axial spacers. Nitrogen and sulphur hexafluoride 
mixtures were used a t  pressures from 0.7 to 40atm, resulting in Rayleigh 
numbers up to lolo. Overall heat-transfer measurements were made as well as 
schlieren photographs of the flow. 

Several correlations have been proposed for experimental mean heat-transfer 
data for natural convection in horizontal annuli, with the results often given in 
terms of an equivalent conductivity. The equivalent conductivity is defined as 
the actual heat flux divided by the heat flux that would occur by pure conduction 
in the absence of fluid motion. Bishop (1966) found that the mean equivalent 
conductivity is essentially a function of the Rayleigh number based on the gap 
thicknessforvariousdiameterratios. Abetterfitwasobtainedby Itohetal. (1970), 
who used (RiRo)*ln(Ri/Ro), where Rl and R,, are the inner and outer cylinder 
radii, as the characteristic length in the Rayleigh number. Raithby & Hollands 
(1975) used a conduction-layer model similar to that used by Langmuir as 
reported by Eckert (1960). A slightly different approach was used by Barelko & 
Shtessel(l973) that is more general. 

Four analytical solutions valid at small Rayleigh numbers have been obtained. 
Mack & Bishop (1968) used a power-series expansion for natural convection 
between isothermal concentric cylinders. Hodnett ( 1973) used a perturbation 
method in dealing with the same problem. Huetz & Petit (1974) considered the 
case of constant heat flux on one wall, the other remaining isothermal. The con- 
jugate problem of conduction within the inner cylinder coupled with convection 
in the gap has been studied by Rotem (1972). 

The first numerical solution for natural convection between horizontal con- 
centric cylinders was obtained by Crawford & Lemlich (1962) using a Gauss- 
Seidel iterative approach. Abbott (1 964) used matrix inversion techniques to 
obtain solutions for very thin gaps. Shibayama & Mashimo (1968) compared their 
theoretical streamlines with photographs of smoke patterns in air. Powe, Carley & 
Carruth (1971) examined the transition to unsteady flow for Prandtl numbers 
near 0-7 by determining the Rayleigh number at which a counter-rotating eddy 
began to form. They found that this agreed with the previous experimental 
determinations of Powe et al. (1969). 

Although qualitative comparisons between flow patterns obtained experi- 
mentally and theoretically have been made for the concentric cylinder configura- 
tion (Shibayama & Mashimo 1968), there has been very little direct quantitative 
comparison of heat-transfer results. In  the present study, natural convection 
between horizontal concentric cylinders is investigated experimentally with 
optical methods and theoretically using numerical techniques. The ra,nge of 
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conditions used in each method overlaps so that the heat-transfer results can be 
compared quantitatively. 

The experimental results are obtained with the aid of a Mach-Zehnder inter- 
ferometer. This technique enables the temperature field in the enclosure to be 
visualized. Since the flow investigated is assumed steady with no axial variation 
except for end effects, the results can be interpreted as the temperature distribu- 
tion at any cross-section. This also permits values for the local heat flux to be 
determined. Local heat-transfer coefficients are obtained on both cylinders with 
either air or water in the annulus. 

Numerical solutions of the governing equations with the constant-property 
assumption provide both the temperature and the velocity distribution. From 
these, the local and overall heat-transfer coefficients are obtained and compared 
with the experimental results. The present solutions extend previous results to 
higher Rayleigh numbers and show the effect of Prandtl number and diameter 
ratio. 

2. Experimental study 
Apparatus 

A test cell was built for use in a Mach-Zehnder interferometer capable of using 
air a t  atmospheric pressure as well as liquids. Interferograms record the tem- 
perature distribution between the cylinders, which can be analysed to yield the 
local heat flux. The assembled apparatus with the thin windows in place is shown 
in figure 1. 

The inner cylinder was machined from solid copper bar stock into a tube 
20.3 cm long with an outside diameter of 3.56 cm and a wall thickness of 0.51 cm. 
This was heated by passing direct current through a 1000  tubular resistor 
approximately 18 cm long held in the centre of the cylinder. Six thermocouples, 
four in the mid-plane spaced 90" apart and one a t  each end, were positioned 
within 2mm of the outer surface of the cylinder. All thermocouple and heater 
wires were passed through a slot near one end. Expanaed polystyrene disks were 
mounted on each end to reduce conduction losses to the windows. The inner 
cylinder was held concentrically within the outer cylinder by two stainless-steel 
hanger rods about 2 mm in diameter. 

The outer cylinder, also of copper, was machined into a tube 20.32cm long 
with an inside diameter of 9.25 em and a wall thickness of 0.45 cm. This made 
LID, = 0-8, where L is the annulus gap width and Di is the outside diameter of 
the inner cylinder. Six thermocouples were positioned within 1 mm of the inside 
surface and located in a similar fashion to those in the inner cylinder. Two copper 
strips 1.27 cm wide and 0.1 cm thick were placed around the outside to form flow 
channels for the cooling water in the form of a double helix. This permitted 
counterflow of water in adjacent passages. The strips, which were soldered onto 
the outer cylinder, also act as fins to increase the heat-transfer coefficient to the 
cooling water. Brass flanges soldered onto each end of the outer cylinder hold the 
windows in place and serve as end supports for a larger brass cylinder that forms 
the enclosure for the cooling passages. 
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FIGURE 1. Schematic diagram of experimental apparatus. (a) Inner cylinder. ( b )  Outer 
cylinder. ( e )  Heater. (d )  Cooling water channels. (e) Window. 

Two sets of windows were used depending upon the fluid. Windows 10.13 em 
in diameter and 0.585 em thick were used with air. These were cut from selected 
pieces of commercially available polished plate glass. When water was used, 
these caused optical distortions from bending due to hydrostatic loading. Two 
windows 5-08cm thick were made that prevented this and enabled good iso- 
thermal infinite-fringe settings to be obtained. 

Electric power was provided to the inner-cylinder resistor by a regulated d.c. 
power supply. The power input was read from a wattmeter with an accuracy of 
- + 0.04 W. The cooling water was maintained isothermal to within f 0.01 "C by a 
constant-temperature water bath. The thermocouples were connected separately 
for the air runs so that any non-uniformities in temperature on either cylinder 
could be measured. When water was used the thermocouples were placed in 
series to form two thermopiles, one for each cylinder. The individual thermo- 
couples could be read to within 0.02 "C and the thermopiles to within 0.004 "C. 
The maximum angular temperature difference was found to be 0.2% of the 
temperature difference between the cylinders for the inner cylinder and 0.1 % 
for the outer cylinder. The maximum axial variations were 1 and 0.03 % for the 
inner and outer cylinders respectively. 

The principle of operation of the Mach-Zehnder interferometer is described by 
numerous authors including Goldstein (1970) and Hauf & Grigull (1970). The 
light source was a 5mW helium-neon laser. No compensating chamber was 
required. 

Procedure 

Two sets of experimental runs were made, one with air, the other using water. 
For the air runs the thixi windows were set in place after the two cylinders ha.d 
been positioned concentrically. When water was used, the thick windows were 
mounted and the cell filled with demineralized water that had been boiled to 
reduce the amount of dissolved gasses. After this the entire test cell was insulated 
and left overnight to come to thermal equilibrium. 

The cell was then aligned with the test beam of the interferometer, which had 
previously been adjusted to be horizontal. An isothermal infinite-fringe setting 
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was obtained by rotating the mirrors of the interferometer. Photographs, both 
with and without the reference beam, were taken to determine the scale factor 
and to record the uniformity of the optical adjustment. Then the cooling water 
was circulated and the power supply adjusted to a predetermined setting. The 
apparatus was left to reach a steady state, which took a t  least 3 h for the air runs 
and up to 8 h for the water runs. 

The data acquisition consisted of reading the temperatures of the room and 
water bath, measuring the thermocouple e.m.f.'s, recording the local atmo- 
spheric pressure and determining the power input to the inner cylinder. After all 
of these had been satisfactorily recorded, a number of interferograms were made 
as well as a photograph with the reference beam blocked so that refraction effects 
could be observed. These were taken on 35 mm fine-grain film. 

Mean heat-transfer results consisted of the average equivalent conductivity, 
Rayleigh number and Prandtl number obtained from the wattmeter, thermo- 
couples and barometric pressure reading. All fluid properties were evaluated a t  
the arithmetic mean of the temperatures of the two cylinders. End-loss and 
radiation corrections were needed for the air results; only a minor end-loss 
correction was necessary when using water. The end loss due to conduction 
through the windows was found by filling the annulus with an insulating material 
of known thermal conductivity and measuring the total amount of heat trans- 
ported between the cylinders at various temperature differences. The corrected 
total heat flow agreed with the averaged fringe values, so that heat transfer 
between the fluid and the windows was neglected. 

Local results were obtained from the interferograms. The position of each 
fringe was measured by viewing the film negative on a tool-maker's microscope. 
Readings were necessary on only half of the interferogram owing to symmetry. 
The positions were measured along radial lines starting near the inner-cylinder 
surface. This procedure was followed at least every 30" with 15" intervals used 
when more complete data were desired. Corrections for first- and second-order 
refraction errors as well as thick-window effects were included in the data 
reduction. The only external input required was the temperature of one of the 

when air was used. The temperature corresponding to each fringe was obtained 
by starting a t  the cylinder with the known temperature and index of refraction 
and proceeding towards the other. The three points closest to each cylinder were 
fitted with a straight line using a least-squares regression analysis. This provided 
the temperature gradient and the local heat flux at each surface. The temperature 
difference and Rayleigh number were found a t  every angle by extrapolating these 
lines to the position of each surface. The averaged fringe heat-transfer results 
were obtained by averaging the local equivalent conductivities and temperature 
differences for the various angles. 

The mean heat-transfer results were used as a check on the Rayleigh number 
and the total heat flux as determined from the interferograms. The two methods 
agreed to within 7 yo for the Rayleigh number and to within 3 yo for the total 
heat flux. The mean results were also used where interferometer data could not 
be obtained owing to large refraction effects. 

cylinders from the thermocouple measurements and the atmospheric pressure 
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Results 
Since most of the data were obtained from the interferograms, the majority of 
the discussion below is based on optical measurements. An interferogram using 
air is shown in figure 2 (plate 1). The fringes can be considered to represent 
isotherms since the index of refraction is a function of temperature only. 

The inner-cylinder boundary layer resembles the natural convection boundary 
layer near a single horizontal cylinder. The radial fringe spacing near the cylinder 
surface is smallest at the bottom. This indicates that the largest temperature 
gradient and heat flux occur on the bottom. The boundary-layer thickness 
increases as the flow moves up around the cylinder. The largest thickness and 
smallest temperature gradient occur at the separation point on top. The buoyant 
plume above the inner cylinder impinges upon the outer cylinder a t  the top, 
creating the thinnest boundary layer and highest heat flux for the system. This 
warm fluid then moves in a boundary layer adjacent to the outer cylinder towards 
the bottom. In part of the region between the two boundary layers a temperature 
inversion exists, the fluid near the cool surface being warmer than that closer to 
the heated surface. This phenomenon has also been observed in natural con- 
vection in a vertical slot (MacGregor & Emery 1968) and between concentric 
spheres (Scanlan, Bishop & Powe 1970). 

The flow has been found to be unsteady a t  high Rayleigh numbers ( > lo5) by 
other investigators. No oscillations were observed in any of the present tests, which 
were at Ra, < lo5 with air. This is in good agreement with Powe et al. (1969). 

An interferogram obtained using water is given in figure 3 (plate 2). The 
temperature distribution resembles that for air at the same Rayleigh number, 
including thermal boundary layers and the reversed temperature gradient near 
the centre of the gap. The isotherms comprising the inner-cylinder boundary layer 
tend to close at the top, creating a narrower thermal plume than in air. The 
temperature of the plume centre-line also decreases faster than for air. As expected 
from similarities in temperature distribution, the local heat-flux distribution is 
similar for air and water at the same Rayleigh number. 

At higher Rayleigh numbers the temperature field alters, as can be observed 
in figure 4 (plate 3), taken using water a t  a Rayleigh number of 2.33 x lo5. The 
inner cylinder appears to be completely surrounded by a thermal boundary layer 
with large radial temperature gradients. The outer-cylinder boundary layer is 
well defined except near the bottom. The central core region has small horizontal 
temperature gradients in the centre near the 90" position. This region becomes 
larger as the Rayleigh number is increased. There is a small temperature dip 
adjacent to the edge of the inner-cylinder boundary layer and a warm hump next 
to the outer boundary Jayer. This was also found with thermocouple probes in 
water and higher Prandtl number fluids for natural convection between hori- 
zontal cylinders by Liu et al. (19611, between spheres by Scanlan et al. (1970) and 
in a vertical slot by MacGregor & Emery (1968). Rube1 & Landis (1969) predicted 
this numerically for natural convection in a vertical slot for Rayleigh numbers 
based on the plate separation larger than 105. The present Rayleigh number is 
essentially equivalent since it is based on the distance between the cylinders. 
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FIGURE 5. Dimensionless radial temperature distribution in water for RaL = 2.09 x lo6, 
Pr = 5.45, LID, = 0 . 8 . 0 , O " ;  4, 15'; A, 30'; 0 ,60";  0 ,  90'; V, 120'; 0,150'; 0,180'. 

I x o  
FIGURE 6. Influence of Rayleigh number on local equivalent conductivity in air. 
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AT 
("C) 

11.14 
14.37 
17.12 
20.02 
20.41 
26.30 
31.42 
41.65 
50.53 
60.16 
69.27 

0.039 
0.075 
0.109 
0.163 
0,224 
0.191 
0.242 
0.318 
0-37 1 
0.544 
0.450 
0.622 
0.781 
1.297 
2.356 
1.721 

&(Ti + To) 
("C) 

33.46 
35.03 
36.55 
36.11 
28.57 
35.23 
36-12 
41.28 
50.66 
50.57 
55.13 

31.00 
27.72 
27.31 
28.43 
24.72 
30.86 
31.24 
29-64 
30-03 
24.90 
30.07 
29.50 
29-61 
29.93 
23-94 
30.14 

Q (W RaL 

1.08 2.11 x 104 

Results using air 

1.33 2.66 
1.64 3.09 
1.98 3.65 
2.01 4.16 
2.90 4.70 
3.48 5.72 
4.90 7.02 
6.36 5.43 
7-76 8.86 
9.50 9.56 

Results using water 

0.188 3-16 
0.298 5.32 
0.489 8,46 
0.670 9.52 

0.821 1.46 
1.02 1.76 
1.29 2.09 
1.97 2.33 
1.60 2.54 
2.55 3.42 
3.33 4.31 
6-29 7.28 

11.53 9.53 
8.73 9.76 

0.102 2.32 x 104 

0.519 1.12 x 105 

Pr 

0.706 
0.706 
0.706 
0.706 
0.707 
0.706 
0.706 
0.705 
0.702 
0.702 
0.702 

5.33 
5.76 
5.82 
5.67 
6.21 
5.34 
5.30 
5.50 
5.45 
6.19 
5.45 
5.52 
5.51 
5-46 
6.34 
5.44 

- 

ke, 

2.34 
2.58 
2.66 
2.75 
2-80 
3.00 
3.09 
3.23 
3.37 
3.46 
3.62 

2.55 
2.86 
3.10 
3.42 
3-70 
3.78 
4.03 

-3.98 
4-29 
4.48 
4.35 
5.00 
5.21 
5-90 
6.08 
6.18 

TABLE 1. Experimental mean heat-transfer results for LID, = 0.8 

The dimensionless radial temperature profiles for water are essentially similar 
to those for air below Ra, = lo6. Figure 5 shows the temperature profiles 
for one of the water tests above Ra, = lo5. The top vertical position is 0' with 
180" at the bottom. The distribution is very similar to that measured in silicone 
fluid with a thermocouple by Liu et al. (1961) although the present Rayleigh 
number is smaller by a factor of 2. The thermal boundary layers near both 
cylinders are well defined, as is the temperature inversion in the central region. 

The distributions of the local equivalent conductivities on both cylinders are 
shown in figure 6 for three different air runs. The distribution on the inner cylinder 
resembles that given by Grigull & Hauf (1966) for large L/D, ratios. The largest 
value occurs a t  the stagnation point on the bottom with the minimum on the top. 
This is qualitatively similar to natural convection about a single horizontal 
cylinder. The highest heat transfer on the outer cylinder is on the top owing to the 
impinging plume. The values decrease from there until the bottom is reached, 
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FIGURE 7. Mean equivalent conductivity as a function of Rayleigh number for the present 
experimental results, the present numerical results for Pr = 0.7 and LIDi = 0.8 and 
previous correlations for Pr M 0.7 and LID, = 0.8. 0 ,  present experiments using air; ., present experiments using water; - , present numerical results ; -0-, Kraussold ; 
-A-,LiuetaZ.;-x-, Lis;---,Bishop;---- , Shibayama & Mashimo; -0-, 
Barelko & Shtessel; - - -, Raithby & Hollands. 

which has practically zero heat flux. The distribution on the inner cylinder is the 
more uniform of the two. 

The average equivalent conductivities for both the air and the water results are 
given in table 1. The values for water are slightly higher than those for air. The 
air data are correlated using a least-squares regression analysis by 

I e q  = 0.159RaE272, 2.1 x lo4 < Ra, < 9.6 x lo4, (2.1) 

Ees  = 0.234 Rat238, 2.3 x lo4 < Ra, < 9.8 x lo5. (2.2) 

Eeq = O * ~ O O R G L ~ ~ ~ ,  Eeq = 0.202Ra0;25 (2.3), (2.4) 

and the water results by 

If one forced the data to fit a one-fourth power law, the correlations would be 

for air and water respectively. 
The present experimental results are shown in figure 7 ,  as well as the present 

numerical curve for LID, = 0.8 and Pr = 0.7. Several previously obtained corre- 
lations are shown for comparison. The present results agree well with the experi- 
mental correlation of Bishop (1966)  and the conduction-boundary-layer model 
developed by Raithbj- & HolZazids (1975) for LIDt = 0.8. The experimental 
correlation given by Itoh et al. (1970)  is not shown since the curve is nearly 
identical to that of Raithby & Hollands. The ot’hers do not agree as well with the 
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present results. The curves from Kraussold (1934) and Liu et al. (1961) are too low. 
Those of Shibayama & Mashimo (1968), Lis (1966) and Barelko & Shtessel(l973) 
with a critical Rayleigh number of 2 x lo3 and k = 0.4 are better but the slopes of 
these curves do not correspond to that of the present results. 

3. Numerical study 
Derivation of equations 

To approximate the natural convection flow being studied, several assumptions 
have been made. Steady laminar flow is assumed since this has been found 
experimentally for small Rayleigh numbers. The flow is also assumed to be 
invariant along the axis of the cylinders, which leads to a two-dimensional 
approach. A vertical plane through the centre of the system divides the flow into 
two symmetric halves, so that only one side need be studied. The Boussinesq 
approximation of constant fluid properties is used. The governing equations 
commensurate with the above assumptions result in the following elliptic, 
coupled, time-independent equations in cylinderical polar co-ordinates : 

au u iav -+-+-- = 0, 
aR R R ~ B  

The co-ordinates are R, measured from the centre of the system, and 8, measured 
clockwise from the upward vertical line. The radial velocity U is positive radially 
outwards, the angular velocity V positive in the clockwise direction for 0 < 0 < 71. 

P is the pressure, T the temperature and FR and Fe the body-force components in 
the radial and angular directions respectively. The fluid properties include the 
density p ,  dynamic viscosity p, specific heat c and thermal conductivity k. The 
body-force terms can be written as functions of the temperature difference: 

FR = gp/?(T - To) cos 8, 
Fo = gp/?(T - To) sin 8, 

where g is the gravitational acceleration, T the temperature at a point within the 
fluid, To the temperature of the outer cylinder and /? the thermal volumetric 
expansion coefficient. The stream function Y can be made to satisfy the continuity 

After replacing the velocities with stream-function derivatives from (3.7) and 
F, and Fe by (3.5) and (3.6) the equations are made dimensionless by setting 

equation by setting u = 3-1 ayplae, v = - aypR. (3.7) 
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where a = k/pc is the thermal diffusivity, L is the gap between the cylinders and 
T, is the temperature of the inner cylinder. The resulting equations can be 
simplified by introducing the vorticity, defined as 

0 = -V2$, (3.9) 

where (3.10) 

In  the actual computations, i t  is convenient to use the velocities rather than the 
derivatives of the stream function in the coefficients. Therefore the equations to 
be solved are 

V2$ = - w ,  (3.11) 

(3.12) 

(3.13) 

along with the velocity equations (3.7). The dimensionless parameters appearing 
in the equations are the Prandtl number Pr = pc/k and the Rayleigh number 
Ra, = pgpL3(Ti - T,)/pa. The values of the temperature and velocity at  any 
position are determined by the Prandtl number, Rayleigh number, boundary 
conditions and geometry. For the concentrio cylinder configuration the only 
geometry variable is the diameter ratio. 

The boundary conditions imposed in the present problem are two impermeable 
isothermal walls at constant radii and two vertical lines of symmetry at  8 = 0 
and 8 = 180". The stream function is constant along each wall as well as along 
the lines of symmetry. Since no flow enters or escapes from the enclosure, the 
stream function is set equal to zero on all the boundaries. The dimensionless 
temperature equals unity on the inner cylinder and zero on the outer cylinder. 
It is assumed that at the lines of symmetry the angular derivatives of the tem- 
perature vanish. The vorticity is an odd function across the symmetry lines and 
equals zero on the symmetry lines. The vaIue of the voriticity at  the walls has 
been treated by numerous investigators, including Gosman et al. (1969, p. 116), 
who found the formulation of the vorticity a t  the walls to have a considerable 
effect on the convergence rate and stability of the computations. In  the present 
case (3.11) is directly applied at the walls; the angular derivatives vanish, as does 
the first radial derivative of the stream function owing to the zero-velocity 

= - 8 2  $/ar2. (3.14) condition, leaving 

Therefore the boundary conditions become 

on the symmetry lines, 
@ = aupe = v = 0 = a$lae = o (3.15) 

$ = u = v = 0, w = -a2@/ar2 ,  g5 = 1 (3.16) 

on the inner cylinder and 

@ = u = v = 0, w = -a2$/ar2,  4 = o (3.17) 

on the outer cylinder. 
45 
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Method of solution 
The finite-difference approach is used in the present problem to write the 
differential equations in terms of values at discrete points. The central-difference 
scheme that has truncation errors of second order in Ar and A0 was found to be 
stable. This is used for the interior nodes while a one-sided difference formulation 
is required at  the boundaries. For example, the temperature a t  an interior node 
(i,  j) is given in terms of temperatures at surrounding nodes by 

9i, j = K #$+I, j + Xi 9 i -1 ,  j + yi 9i, * + I +  zi 9i, j-1, (3.18) 

with Qi = 2( 13- stir;), ei = Ari/Ae. (3.19e) 

i a n d j  are integers describing the number of radial grid lines from the inner 
cylinder and the number of angular grid lines from the top symmetry line 
respectively. Similar relations were developed for the vorticity and stream 
function from (3 .11)  and (3 .12) .  

The successive over-relaxation technique was chosen as the method of solution. 
This is a relatively simple method that can easily be altered when chan ing the 
grid structure or parameters affecting convergence. The major disadvan & is 
the task of choosing the optimum relaxation coefficients for a given situation. 
The temperature at an interior node is obtained from the following equation: 

m - m-1 di,j - di,j + A ( ~ d ~ + l , i + X i d ~ - l , i + y i d E i + l + ~ i d b j - l - d ~ ~ l ) ,  (3 .20)  

where m is an integer equal to the number of the current iteration. The values a t  
the surrounding nodes are the most recent a t  those points, so that n is either m 
or m - 1 depending on the direction of the iteration-point sequence. The relaxa- 
tion factor A used for 9, w and 4 varied from 1.35, 0.5 and 1-2 respectively for 
Rayleigh numbers near lo3 to 0-5, 0.05 and 0-5 near Rayleigh numbers of 105. 

To keep the convergence time to a minimum without sacrificing accuracy, 
a semi-uniform grid was used with Ar = 0.05 near the walls and 0.1. near the 
centre. The angular grid spacing was loo except at  large Rayleigh numbers, when 
the first angular grid space near the top was subdivided into four equal 2.5" 
increments. The basic grid was 16 x 19, giving a total of 304 nodes, 238 in the 
interior and 66 on the entire boundary. 

The stream function and vorticity usually took longer to converge than the 
temperature. This was inpart due to the smaller relaxation factor for the vorticity. 
In  practice one complete iteration consisted of the sequence {$-, w ,  9, w ,  d}, in 
which the first parameter was updated at every point, followed by the others in a 
similar manner. 

The solution was considered to have converged when the stream function and 
temperature met the following criterion: 

(Bm - Bm-')/Bm-l < G (3.21) 
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a t  each point. Here B is either $ or q5 and c is a prespecified constant. For most 
solutions c was set equal to but for some results above a Rayleigh number of 
lo4 the value 5 x was used. The vorticity usually did not satisfy this criterion 
since there was always one value very close to zero, causing the fraction to 
become very large. Another useful method for checking the convergence was to 
compare the average equivalent conductivities for the inner and outer cylinder. 
These were usually within 1 yo a t  convergence. 

The calculations were performed on a CDC6600 digital computer using a 
Fortran program. The time required varied from about 10 s a t  Rayleigh numbers 
near lo2 to about 90s  for Rayleigh numbers near lo5, with running times 
averaging about 30s. 

Results 

Initially solutions were obtainedthat could be directly compared with previously 
published results. A solution sibnilar to one presented by Crawford & Lemlich 
(1962) at Ra,  = 8.925 x lo3, Pr = 0.714 and LID, = 0-5 was obtained. The 
results agree well, including the overall equivalent conductivity of 1.792 com- 
pared with the value 1-765 obtained previously. 

An analytical result with Ra, = 1.842 x lo3, Pr = 0.7 and LID, = 0.425 pre- 
sented by Mack & Bishop (1968) was also checked. The angular velocity and 
temperature distributions of the two studies agree fairly well although the results 
are not identical. The local equivalent conductivities differ by as much as 10 yo 
although the mean value of 1.126 determined numerically is only about 2 yo lower 
than that of 1.15 obtained before. The difference may be due to the slow con- 
vergence of the power series used by Mack & Bishop. 

Another calculation was made under the conditions of a numerical solution 
obtained by Powe et al. (1971) with Ra, = 2-767 x lo3, Pr = 0.7 and LID, = 0.1. 
The flow results agree with the previous solution although the deviation of the 
local Nusselt number reported near the symmetry lines is not confirmed in the 
the present calculation. Perhaps the finite-difference formulation of the boundary 
conditions on the symmetry lines was not the same in both cases. A solution was 
also obtained at Ra, = 6 x lo3, Pr = 0.7 and LID, = 0.1, which is above the 
transition line of Powe et al. (1969). A small counter-rotating eddy was found 
near the top of the annulus, extending about 15' from the top symmetry line. This 
is in good agreement with experimental observations of Powe et al. (1969). 

Since one of the objectives of the current investigation is to compare the 
numerical results with the experiments, inany solutions were obtained with 
Pr = 0.7 and LIDi = 0-8. The Rayleigh number was increased from 102 to about 
lo5. Over this range the flow is steady. This enabled the influence of the Rayleigh 
number on the flow and heat transfer to be studied. The following description of 
Rayleigh number effects pertains to LIDi = 0.8 although qualitatively similar 
results will exist for other diameter ratios. 

The flow and heat-transfer results can be divided into several regimes. Below 
a Rayleigh number of lo2 the maximum stream function or centre of rotation is 
near 90". The flow in the top and bottom portions of the annulus is symmetric 
about the 90' position. The velocity profiles a t  any one position are similar, with 

45-7. 



708 T. H .  Kuehn and R. J .  Goldstein 

0 

1 so 
P 4 

FIGURE 8. Streamlines and isotherms in transition region for RaL = lo3, Pr = 0.7, 
LID, = 0.8, A$ = 0.5, A$ = 0.1. 

the magnitudes directly proportional to the Rayleigh number. The velocities are 
too small to affect the temperature distribution, which remains essentially as in 
pure conduction. This makes the convection terms in (3.12) and (3.13) vanish. 
Therefore (3.12) and (3.13) can be approximated by 

(3.22) 

and v2$6 = 0, (3.23) 

where the source term in (3.22) remains a constant times the Rayleigh number at  
any one position. 

A transition region exists for Rayleigh numbers between lo2 and 3 x 104. The 
flow remains in essentially the same pattern but becomes strong enough to 
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0 

180 + i 
FIUURE 9. Streamlines and isotherms in transition region for RaL = lo4, 

PT = 0-7, LIDi = 0.8, A@ = 3.0, A$ = 0.1. 

influence the temperature field. As the Rayleigh number increases, the centre of 
rotation moves upwards. 

The isotherms begin to resemble eccentric circles near a Rayleigh number of 
lo3, as can be seen in figure 8. This has been called the 'pseudo-conductive 
regime 'by Grigull & Hauf (1966) since the overall heat transfer remains essentialIy 
that of conduction. With further increases in Rayleigh number the temperature 
distribution becomes distorted, resulting in an iiicrease in overall heat transfer. 

A plot of streamlines and isotherms at a Rayleigh number of lo4 is given in 
figure 9. Near this Rayleigh number, the radial temperature inversion appears, 
indicating the separation of the inner- and outer-cylinder thermal boundary 
layers. The cross indicates the location of the maximum value of the stream 
function, which would be the centre of rotation. This maximum is located near 
the 70" psition with the flow above and below this being fairly symmetric. Local 
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1 x 0  

$ 4 
FIGURE 10. Streamlines and isotherms in steady laminar boundary-layer 

region for RaL = 5 x lo4, Pr = 0.7, LID, = 0.8, A@ = 5.0, A$ = 0.1. 

heat-flux values are becoming further distorted from those of conduction. 
Essentially heat is being convected from the lower portion of the inner cylinder 
to the top of the outer cylinder. The vorticity in the central core is almost con- 
stant, indicating a region approaching solid-body rotation. This result was pre- 
dicted for flow in a vertical slot by Batchelor (1954). 

A steady laminar boundary-layer regime exists between Rayleigh numbers of 
3 x 104 and lo5. Streamlines and isotherms in this region are shown in figure 10. 
Boundary layers exist on both cylinders although the lower portion of the annulus 
is practically stagnant. The dimensionless radial temperature profiles in the 
inner-cylinder boundary layer are similar at a given1angle when a distance scaling 
factor of R a i  is used. This is the same scaling factor as for a natural convection 
boundary layer about a single horizontal cylinder. Figure 11 shows the angular 
velocity distribution for Ra, = 5 x lo4, Pr = 0.7 and = 0.8. The Rayleigh 
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FIGURE 11. Angular velocity distribution in steady laminar boundary-layer region for 
RaL = 5 x lo4, Pr = 0.7, LID, = 0.8. 

number based on the inner-cylinder diameter is 2-56 x lo4. The velocities near 
the inner cylinder resemble the distribution around a single horizontal cylinder 
in natural convection. The velocities in the inner-cylinder boundary layer can be 
made similar at any angle by using a length scale proportional to Rai  with the 
maximum velocity proportional to Rat. This cannot be extended very far into 
the gap since other effects predominate in the core. The velocity profiles in the 
outer-cylinder boundary layer in the top half of the annulus (30" 6 8 < 90") are 
independent of angular position with the magnitudes proportional to Rat.  As 
the fluid moves down past the 90" position the outer boundary layer weakens, and 
disappears entirely near the bottom. 

On the basis of previous experimental observations (Powe et al. 1969) and the 
lack of convergence of the present numerical results an oscillating laminar flow 
regime begins near a Rayleigh number of lo5 for air. Fluids with a larger Prandtl 
number will remain steady until larger Rayleigh numbers are attained. This was 
observed by Liu et al. (1961) and confirmed by the present experimental results 
for water. Figure 12 shows streamlines and isotherms a t  Ra, = lo5 and Pr  = 5.0. 
The maximum of the stream function is about 15" from the top with the lower 
portion of the annulus practically stagnant. The vorticity is approaching zero in 
the central portion of the annulus, indicating the beginning of a stationary core 
region. This has also been found for natural convection in a vertical slot by 
Rube1 & Landis (1969). 

As the Rayleigh number is increased further the flow above the inner cylinder 
will become turbulent. This will create a turbulent boundary layer on the outer 
cylinder while the inner boundary layer remains laminar as reported by Lis 
(1966). Eventually the inner boundary layer will a.lso become turbulent. 

The local equivalent conductivities for the inner and outer cylinders are 
shown as a function of Rayleigh number in figures 13(a) and (b). The values 
approach one in the conduction regime for Rayleigh numbers below 10%. The local 
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FIGURE 12. Streamlines and isotherms in steady laminar boundary-layer region for 

RaL = 106, Pr = 5.0, LID, = 0.8, A@ = 5.0, A$ = 0.1. 

values for the inner cylinder are nearly proportional to Rai  in the steady laminar 
boundary-layer regime above RaL = 3 x 104. However, this is not true for the 
outer cylinder. On both cylinders some local values are larger than one while 
others are less than one at the same Rayleigh number. 

Simple reasoning predicts the highest local heat flux to occur at the stagnation 
point with small heat transfer at the separation point. Considering the inner 
cylinder, the local heat flux at the bottom is the largest while that at the top is 
small. The value of kes at the separation point is not zero but is less than one. The 
same argument applies to the outer cylinder with the stagnation point on top and 
separation near the bottom. The average equivalent conductivity is proportional 
to RaE2& above Ra, = 2 x 104. 

The effect of diameter ratio on the results was determined by varying LID, 
from 0.1 to 8.0 near RaL = 104 and Pr = 0.7. The flow pattern does not change 
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FIGURE 13. Influence of Rayleigh number on (a )  inner- and ( b )  outer-cylinder 
local equivalent conductivity. - - - -, average. 
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significantly although the centre of rotation moves towards the top with 
increasing LID,. The mean equivalent conductivity is closely proportional to 
[L/(R,  R,)*]a, where Ri and R, are the inner and outer radii respectively, for 
0.1 6 LID, 6 1.3. This is similar to a correlation given by MacGregor & Emery 
(1968) for natural convection in vertical layers. The power of the Rayleigh 
number in the relation E , ,  M CRaF changes from near 0-25 for LID, = 0.5 to 0.2 
for LIDi = 8.0. The maximum mean equivalent conductivity occurs near 
LID, = 3.0 at RuL = lo4 but occurs a t  smaller values of LID, at larger Rayleigh 
numbers. However, the mean Nusselt number based on the inner-cylinder 
diameter increases as the outer cylinder is made larger at a constant Rayleigh 
number based on the inner-cylinder diameter. As the outer cylinder becomes 
larger relative to the inner cylinder the mean temperature in the annulus 
decreases. This indicates that the thermal resistance around the inner cylinder 
is becoming the dominant factor in the overall heat transfer. As the outer cylinder 
becomes infinitely large the only thermal resistance is around the inner 
cylinder with the temperature in the gap equal to that of the outer cylinder. At 
large LID, the total heat flow will be essentially that from a single horizontal 
cylinder in an infinite medium. 

The Prandtl number was varied from 0.5 to 1000 at RuL = lo4 and LIDi = 0.8. 
Local equivalent conductivities were generally smaller and more -uniform at 
lower Prandtl numbers, indicating an approach to conduction. The centre of 
rotation moved nearer the top as the Prandtl number increased. For Prandtl 
numbers larger than 10, the flow and heat transfer remained virtually independent 
of Prandtl number. Local heat-transfer results for some of the numerical solutions 
are presented in table 2. 

4. Comparison of experimental and numerical results 
One of the objectives of the numerical study was to duplicate the conditions of 

the experiments. This not only serves as a check on the experiments but also 
provides information on the velocities which were not obtained experimentally. 
Since only the temperature distributions and heat transfer were measured 
experimentally the comparison is limited to these quantities. 

The experimental temperature distributions from the interferograms can b9 
directly compared with a polar plot of the tempemture distribution obtained 
numerically under the same conditions. The right half of figure 14 (plate 4) is an 
interferogram of an air run. The fringes represent isotherms between the cylinders. 
The experimental errors are primarily optical and due to imperfect isothermal 
adjustment of the interferometer as well as end effects. The left half of figure 14 
is a plot of the isotherms obtained from the corresponding numerical solution. 
The dimensionless temperature of these contours was chosen to be the same as 
those obtained experimentally on the right. The errors in the numerical result 
arise from the constant-property assumption, the finite number of nodes, the 
convergence level of the solution and the necessity to cross plot the results. The 
agreement, though not perfect owing to the considerations mentioned above, is 
quite good, lending validity to both methods. 
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RaL Pr 

lo2 0.7 

103 0.7 

3~ lo3 0.7 

6~ lo3 0.7 

104 0.7 

2~ 104 0.7 

3~ lo4  0.7 

5~ lo4 0.7 

7~ lo4  0.7 

1 0 4  5.0 

3~ lo4  5.0 

5~ lo4 5.0 

105 5.0 

1 0 4  0.5 

104 1.0 

104 10.0 

104 100.0 

104 0.7 

104 0.7 

104 0.7 

104 0.7 

104 0.7 

104 0.7 

104 0.7 

LID, 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.8 

0.1 

0.5 

1.0 

1.3 

2.0 

6.0 

8.0 

Location 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

Inner 
Outer 

ke, 

0" 30" 60" 90" 120" 150" 180" 
f > 

0.95 0.96 0.98 1.00 1.02 1.04 1.05 
1.06 1.05 1.03 1.00 0.97 0-95 0.94 

0.57 0.67 0.90 1-14 1-32 1.44 1.47 
1.78 1.64 1.33 1.00 0.75 0.61 0.57 

0.32 0.61 1.10 1.58 1.88 2.04 2.10 
3.19 2.72 1-91 1.11 0.59 0.35 0.28 

0.33 0.74 1.38 2.00 2.34 2.50 2.56 
4.38 3.52 2.41 1.33 0.60 0.27 0.18 

0.37 0.90 1.64 2.33 2.70 2.85 2.90 
5.35 4.10 2.72 1-54 0.68 0.26 0.14 

0.44 1.18 2.01 2.73 3.21 3.34 3.41 
7.02 4.87 3.04 1-86 0-82 0-24 0.13 

0.48 1.41 2.25 2.95 3.52 3.66 3.79 
8.42 5.25 3.21 2-05 0.92 0.24 0.13 

0.53 1-68 2.58 3.28 3.97 4.15 4.32 
10.77 5.57 3.45 2.28 1.10 0.26 0.12 

0.56 1-84 2.82 3.57 4.32 4.56 4.76 
12.91 5-77 3.65 2.43 1.19 0.21 0.12 

0.43 1.20 1.72 2.23 2.64 2.89 2.98 
5.93 4.18 2.62 1.56 0.75 0.27 0.12 

0.44 1.67 2.37 2.94 3.44 3.77 3.90 
7.80 5.37 3.66 2.38 1.03 0.27 0.10 

0.70 1.91 2.52 3.17 3.75 4.15 4.36 
10.67 5.11 3.54 2.37 1.23 0.24 0.12 

0.78 2.26 3.04 3.86 4.69 5-32 5-53 
16.86 5.52 3.99 2.78 1.21 0.20 0.09 
0.34 0.77 1-53 2.33 2.69 2.79 2.84 
4.92 3.91 2.82 1.56 0.65 0.26 0.16 

0.39 1.00 1.68 2.30 2.69 2.88 2.94 
5.74 4.16 2.66 1.54 0.70 0.26 0.14 

0.43 1.22 1.73 2.22 2.63 2.88 2.97 
5.87 4.18 2.63 1.57 0.76 0.28 0.12 

0.44 1.24 1.73 2.21 2.62 2.88 2.97 
5.84 4.19 2.64 1.57 0.76 0-28 0.12 

0.14 0.45 0.81 1.37 1.75 2.01 2-10 
3-34 1-90 1-76 1.24 0.72 0.42 0.33 

0.23 0-71 1.38 2.16 2.55 2.76 2.84 
4-87 3.57 2.59 1.50 0.68 0.28 0.16 

0-46 0.98 1.72 2-37 2-74 2.87 2.91 
5.59 4.29 2.75 1-54 0.67 0.25 0.15 

0.55 1.07 1-79 2.41 2-76 2.88 2.91 
5.82 4.46 2.79 1.53 0.65 0.24 0.15 

0.71 1.16 1.84 2.42 2.77 2.89 2.92 
6.06 4.64 2.82 1.51 0.64 0.24 0.15 

1.02 1.26 1.72 2.13 2.39 2.52 2.55 
5.97 4.61 2.70 1.36 0.57 0.23 0.15 

1.05 1.23 1-63 2.00 2.26 2.40 2.44 
5.89 4.54 2.65 1.33 0.55 0.23 0.15 

k, 
1.000 
1.002 

1-08 1 
1.084 

1.404 
1.402 

1.736 
1.735 

2.010 
2.005 

2.405 
2.394 

2.661 
2.643 

3.024 
2.973 

3.308 
3.226 

2.069 
2.066 

2.741 
2.768 

3.036 
3.088 

3.756 
3.471 

1.950 
1.955 

2.038 
2.039 

2.070 
2.067 

2.071 
2.067 

1.271 
1.276 

1.850 
1.853 

2.061 
2.059 

2.108 
2.110 

2.148 
2.157 

1.968 
2.084 

1.878 
2.051 

TABLE 2. Local heat-transfer resuIts from numerical solutions 
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(R - RMRo - Ri) 
FIGURE 15. Comparison of experimental and numerical dimensionless radial temperature 
profiles. Experimental data points: 0, O", A, 30"; 0, 60"; 0, 90"; V, 1 2 0 O ;  0, 150"; 
0,  180". 

Experimental Numerical 

Ra L 4.7 x 1 0 4  5~ 104 

LID, 0.8 0.8 
Pr 0.706 0.7 

Another method of comparison is to evaluate the radial dimensionless tem- 
perature profiles. This is done in figure 15 for the results shown in figure 14. 
Additional experimental errors arise owing to the necessity of estimating the 
centre of fringes and the need to extrapolate temperature curves to the cylinder 
walls. The agreement is still good, particularly in the boundary layers adjacent 
to each cylinder. The fringes are narrower in these regions, which enables their 
locations to be determined more accurately than in the centre of the annulus. 

A comparison of the local equivalent conductivities for the above results is 
given in figure 16. Again the agreement is good. The largest difference between the 
experimental and numerical values is less than 10 % while the average values are 
within 2 % of each other. 

Comparisons of some of the water results with corresponding numerical 
solutions have also been made with equal successs. The water results should 
agree better than those for air since the initial optical adjustment was better 
and the small temperature differences used for water come closer to approxi- 
mating the constant-property assumption used in the numerical calculations. 
The maximum temperature difference for air was 69°C compared with 2.4OC 
for water. 

Figure 7 shows the measured average equivalent conductivities for the air 
and water tests as well as the numerical results for Pr = 0.7 and LID, = 0.8. The 
maximum deviation of the air results from the calculated values is 3 % with the 
average deviation less than 2 yo. The water results are slightly higher than those 
for air owing to the larger Prandtl number of water. 
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0 (deg) 

FIUURE 16. Comparison of experimental and numerical local equivalent conductivity. 

Experiment a1 Numerical 

RaL 4.7 x 1 8 4  5 x 10' 
P T  0.706 0.7 

0.8 0.8 - LlDi 
Inner cylinder 0 
Outer cylinder 0 -_ -  

On the basis of the good agreement between the experimental and numerical 
results, i t  seems possible to determine heat-transfer parameters for free con- 
vection in enclosures using either method. The experiments have the advantage 
of being applicable to unsteady flow and turbulence, where the numerical com- 
putations become unstable. However the numerical Analysis gives more informa- 
tion, including the velocity field, which is difficult to obtain experimentally. 

5. Summary 
The results of an experimental and numerical study of natural convection flow 

between horizontal isothermal concentric cylinders have been presented. 
Quantities obtained experimentally include temperature distributions and local 
and averaged heat-transfer coefficients. The numerical solutions confirm these 
values, provide the corresponding velocity distribution and extend the results 
to lower Rayleigh numbers. 

Interferograms were obtained using both air and water for LIDi = 0.8. The 
temperature distributions €or both fluids were nearly the same at similar Rayleigh 
numbers. Some aspects of the temperature distributions have been found to occur 
for natural convection in other geometries, including a single horizontal cylinder, 
concentric spheres and vertical fluid layers. The flow was steady for all Rayleigh 
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numbers investigated. Local equivalent conductivities were obtained for both 
the inner and the outer cylinder. Mean heat-transfer results obtained by 
measuring the power input agreed with the averaged optical measurements. 

Numerical solutions covered the range of Rayleigh numbers from pure conduc- 
tion to steady laminar boundary-layer flow for LIDi = 0.8. The influence of 
diameter ratio and Prandtl number was determined near a Rayleigh number of 
104. Temperature distributions and local equivalent conductivities agreed with 
the corresponding experimental data. 

Radial temperature length scales in the inner-cylinder boundary layer and the 
inner-cylinder local heat flux were found to be closely proportional to Raia for 
Pr = 0-7, L/Di = 0.8 and 3 x lo4 < Ra, 6 lo5. The maximum stream function 
in the annulus and the angular velocities were proportional to Rat for the same 
range of parameters. 
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FIGURE 2. Interferograrn taken using air for R ~ L  = 4.70 x 1 04, 
Pr = 0.706, T21Dt = 0.8. 
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FIGURE 3. Iriterferogram taken using water for RaL = 9.52 x lo4,  
I% = 6.21, LID, = 0.8. 
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FIGURE 4. Interferogram taken using water for RaL = 2.33 x lo5,  
Pr = 6.19, LID, = 0.8. 
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FIGTJRE 14. Cloinparlson of oxperimrntal arid rirnnrrical isotherms. 
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